
MATHEMATICS OF COMPUTATION 
Volume 67, Number 222, April 1998, Pages 519-540 
S 0025-5718(98)00932-6 

GLOBAL AND SUPERLINEAR CONVERGENCE OF THE 
SMOOTHING NEWTON METHOD AND ITS APPLICATION 

TO GENERAL BOX CONSTRAINED VARIATIONAL 
INEQUALITIES 

X. CHEN, L. QI, AND D. SUN 

ABSTRACT. The smoothing Newton method for solving a system of nonsmooth 
equations F(x) = 0, which may arise from the nonlinear complementarity 
problem, the variational inequality problem or other problems, can be regarded 
as a variant of the smoothing method. At the kth step, the nonsmooth function 
F is approximated by a smooth function f (-, 6k), and the derivative of f(., 6k) 

at xk is used as the Newton iterative matrix. The merits of smoothing methods 
and smoothing Newton methods are global convergence and convenience in 
handling. In this paper, we show that the smoothing Newton method is also 
superlinearly convergent if F is semismooth at the solution and f satisfies a 
Jacobian consistency property. We show that most common smooth functions, 
such as the Gabriel-More function, have this property. As an application, we 
show that for box constrained variational inequalities if the involved function is 
P-uniform, the iteration sequence generated by the smoothing Newton method 
will converge to the unique solution of the problem globally and superlinearly 
(quadratically). 

1. INTRODUCTION 

Let p, q : Rn - TRn be two smooth (continuously differentiable) mappings and 
X be a closed convex set in TRn. The general variational inequality problem, 
GVI(X, p, q) for short, is to find a vector x E TRn such that 

(1.1) q(x) E X, (y - q(X))Tp(X) > 0 for all y E X. 

It is known (for example, see [10] for a proof in the case that q(x) = x) that 
GVI(X, p, q) is equivalent to finding a zero of the following nonsmooth equation 

(1.2) q(x) - Hx [q(x) - p(x)] = 0, 
where HIx is the projection operator onto X under the Euclidean norm. Equation 
(1.2) is called the generalized normal equation in [39]. GVI(X,p,q) is a gener- 
alization of variational inequalities and general complementarity problems. The 
variational inequality problem is to find an x E X such that 

(1.3) (y - X)Tp(X) > 0 for all y E X. 
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The general complementarity problem, GCP(p, q) for short, is to find an x E TRn 

such that 

(1.4) q(x) > 0, p(x) > 0, q(x) Tp(x) = 0. 

When q(x) = x, GCP(p, q) reduces to the nonlinear complementarity problem of 
finding an x E TRn such that 

(1.5) x > 0, p(x) > 0, xTp(x) = 0. 

A lot of effort has been spent on complementarity problems and variational inequal- 
ities, for a comprehensive survey see [20], [37]. 

In this paper we focus on general box constrained variational inequalities, i.e., 
we assume that in (1.1) X has the following box form: 

(1.6) X ={x ERn j I< x < Ul, 

where 1 E { RU{_oo}}n, U E {RU{+oo}}n and 1 < u. In this case GVI(X,p, q) will 
be denoted by GVI(l, u,p, q). GVI(l, u,p, q) includes two very useful models: gen- 
eral complementarity problems and box constrained variational inequalities while 
the latter is actually equivalent to what is called mixed complementarity problems 
in some papers [2], [4], [9], [18]. Furthermore, GVI(l, u, p, q) models many important 
problems in engineering, management and economics [20], [37]. 

When X is of the structure (1.6), problem (1.2) is equivalent to 

(1.7) q(x) - mid(l, u, q(x) - p(x)) = 0. 

Here mid(.) is the median operator, i.e., for three vectors a, b, c E {RU f?jOO}}n 

and a < b, 
f ai if ci < ai, 

(mid(a, b, c))i = mid(ai, b,ci) c- if ai < ci < b, i 1, ..., n. 
bi if bi < ci, 

If q(x) = x, (1.7) reduces to 

(1.8) x - mid(l, u, x - p(x)) = 0. 

Since the median operator is piecewise smooth, (1.7) and (1.8) are systems of 
nonsmooth equations. 

A considerable number of generalizations of Newton-type methods [15], [21], [23], 
[29], [35], [36], [44], [47] have been developed for solving nonsmooth equation 

(1.9) F(x) = 0, 

where F: MRn __ Rn is locally Lipschitz continuous but not differentiable. Some 
of these methods solve a linear complementarity problem or a linear variational 
inequality problem at each step. A natural extension of the classical Newton method 
for solving (1.9) is 

(1.10) Xk+1 = Xk - VJlF(xk), 

where Vk is an n x n matrix in a generalized Jacobian of F at xk. For this method, 
only a system of linear equations needs to be solved at each step. There are several 
possible definitions of generalized Jacobians. We will discuss them in the next 
section. It was proved in [40], [43] for the generalized Jacobians in the sense of 
[7] and [40] that the sequence generated by (1.10) superlinearly (quadratically) 
converges in a neighbourhood of a solution x* of (1.9) if F is (strongly) semismooth 
at x* and all matrices in the generalized Jacobian of F at x* are nonsingular. Since 
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most common nonsmooth functions, such as convex functions, piecewise smooth 
functions, the Burmeister-Fischer function which is useful for nonsmooth equations 
arising from the nonlinear complementarity problem [16], and their compositions 
are semismooth functions, this extends the superlinear convergence theory of the 
classical Newton method to the nonsmooth case. The function 

(1.I1) F(x) = q(x) - mid(l, u, q(x) - p(x)) 

is (strongly) semismooth if p and q are (twice) smooth. Globally and superlinearly 
convergent methods for solving (1.9) can be constructed by combining this theory 
with some global convergence techniques. Applications of this theory to the nonlin- 
ear complementarity problem and the variational inequality problem can be found 
in [8], [11], [12], [13], [14], [25], [27], [30], [31], [33], [34], [38], [48], [51]. For a general 
survey on this development, see [26]. 

Another approach for solving (1.9) is the smoothing method [2], [3], [4], [18], 
[28]. The feature of smoothing methods is to construct a smoothing approximation 
function f : n X R++ __ n of F such that for any E > 0, f(., E) is continuously 
differentiable and 

JjF(x)-f(x,E)j -O0 as EJ-*O+ for all x E Rn, 

and then to find a solution of (1.9) by (inexactly) solving the following problems 
for a given positive sequence {Ek}, k = 0, 1, 2..., 

(1.12) f(X, EJk) = 0. 

In [4], Chen and Mangasarian introduced a class of smoothing approximation func- 
tions for nonlinear complementarity problems. Gabriel and More [18] extended 
Chen-Mangasarian's smoothing approach to box constrained variational inequali- 
ties (1.8). Another class of smoothing approximation functions for general com- 
plementarity problems (1.4) was given in [5]. Problems (1.8) and (1.4) are special 
cases of general box constrained variational inequalities GVI(l, u, p, q). The mer- 
its of the smoothing method are global convergence and convenience in handling 
smooth functions instead of nonsmooth functions. However, (1.12), which needs to 
be solved at each step, is nonlinear in general. 

The smoothing Newton method can be regarded as a variant of the smoothing 
method. It uses the derivative of f with respect to the first variable in the Newton 
method, namely 

(1.13) xk+1 = xk tkfx(xk, k)-lF(xk), 

where k > 0, fx(x k, EJk) denotes the derivative of f with respect to the first variable 
at (xk, Jk) and tk > 0 is the stepsize. The smoothing Newton method (1.13) for 
solving nonsmooth equation (1.9) has been studied for decades in different areas [1], 
[5], [6], [22], [32], [42], [46], [50]. In some previous papers, method (1.13) is called a 
splitting method because F(.) is split into a smooth part f(, E) and a nonsmooth 
part F() )-f(., E). The global and linear convergence of (1.13) has been discussed in 
[42], but so far no superlinear convergence result has been obtained. In this paper 
we will address this problem by investigating the relation between the derivative 
fx (XI E) and the generalized Jacobian of F at x. We define a Jacobian consistency 
property and show that the smoothing approximation functions in [4], [5], [18], 
[42] have this property. Under mild conditions, we prove that the sequence {xk } 
generated by the smoothing Newton method is bounded and each accumulation 
point is a solution of (1.9). Furthermore, the convergence rate is superlinear if F is 
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semismooth at the solution and the smoothing approximation function satisfies this 
Jacobian consistency property. Moreover, the convergence rate is quadratic if F is 
strongly semismooth at the solution. In particular, for box constrained variational 
inequalities if p is a uniform P-function, then the smoothing Newton method has 
three advantages: 

* Solving a linear system of equations at each step; 
* Guaranteeing that {xk} is bounded and converges to the unique solution; 
* Having superlinear convergence rate. 

There are a wide variety of algorithms for the solution of variational inequalities 
with box constraints [4], [9], [13], [18], [27], [45], [48]. As said before, some of them 
have nonlinear subproblems. The algorithm proposed in [8] for nonlinear comple- 
mentarity problem (1.5), which is a special case of the box constrained variational 
inequality problem, has the above three properties. The algorithms proposed in 
[27], [48] based on a differentiable merit function (for a survey on merit functions, 
see [17]) for the box constrained variational inequality problem have the above 
three properties if p is a strongly monotone function, which is a stronger condition 
than that of a uniform P-function. Hence, as an application, we present a method 
for solving the general box constrained variational inequality problem with better 
convergence properties. 

This paper is organized as follows. In section 2, we define the Jacobian consis- 
tency property. In section 3, we present the smoothing Newton method in detail 
and prove that the method is globally and superlinearly convergent. In section 4, 
we discuss the application of the smoothing Newton method to GVI(l, u, p, q) and 
verify various assumptions. In section 5, we give some final remarks and point out 
the possible availability of the smoothing Newton method to the order complemen- 
tarity problem and the variational inequality problem (1.3). 

We let . denote the Euclidean norm of Thn and let 

W+ = { I J > O,E E} 

and 
R++ = E I E > 0, 6E RI} 

We denote the set of all nonnegative integers by N = {0, 1,.. 

2. JACOBIAN CONSISTENCY PROPERTY 

Let H Th: -> Rm be locally Lipschitz continuous. According to Rademacher's 
theorem, H is differentiable almost everywhere. Let DH be the set where H is 
differentiable. There are several definitions of generalized Jacobians of H, which 
can be used in the generalized Newton method. The B-differential of H [40] is 
defined by 

aBH (x) { lim H/(x k)} 
x -*x 

Xkc DH 

The generalized Jacobian of H at x in the sense of Clarke [7] is 

AH(x)= convaBH(x). 

The superlinear convergence of (1.10) is established for these two kinds of general- 
ized Jacobians in [40], [43]. Some other variants of Jacobians and their perturba- 
tions are used in the literature [48], [49], [51]. A general range of different kinds of 
generalized Jacobians, which are associated with superlinear convergence of (1.10), 
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is discussed in [41]. In this paper, for the function F, we use a kind of generalized 
Jacobian, denoted by acF and defined as 

acF(x) = aFi(x) x aF2(x) x ... x &F,(x). 

This definition can be seen as a special case of the C-differential operator discussed 
in [41] and is more suitable to the discussion in this paper. 

We are now able to define the Jacobian consistency property. 

Definition 2.1. Let F be a Lipschitz continuous function in R'. We call f 
Thn X R++ ) Sna smoothing approximation function of F if f is continuously 
differentiable with respect to the first variable and there is a constant A> 0 such 
that for any x E Tn and E E R++, 

(2.1) llf (X) - F(x)H < ME. 

Furthermore, if for any x R Tn, 

(2.2) lim dist((Vxf (x, I))T, acF(x)) = 0 

then we say f satisfies the Jacobian consistency property. 

Remark 2.1. In condition (2.1), ME may be replaced by any nondecreasing function 
v: R+ - R+ such that v(O) = 0 and v(t) > 0 for t > 0. In this paper, however, 
we will restrict our discussion to (2.1), because it makes the analysis significantly 
simple. 

For simplicity, in the remainder of this paper we denote 

f(XE) - (7x f (X) E)) T. 

It was proved in [42] that for any continuous function F by using convolution we 
can construct a smoothing approximation function f of F. We now investigate the 
cases in which f has the Jacobian consistency property. 

Chen and Mangasarian [4] introduced a class of smoothing functions for the 
nonlinear complementarity problem (1.5). Gabriel and More [18] extended Chen- 
Mangasarian's smoothing approach to the box constrained variational inequality 
problem (1.8). The result in [18] may be easily generalized to the function F 
defined in (1.11). Let p: R - R+ be a density function with a bounded absolute 
mean, that is 

(2.3) j slp(s)ds < oc. 
-00 

Define the smoothing approximation h(x,E) = (hi(x,E)) to the mid function in 
(1.11) by 

hi (x,I ) = j mid(li, ui, qi (x) -pi (x) -Es)p(s)ds. 

Let 

(2.4) f (XI) = q(x) - h(x, ). 

Following Lemma 2.3 and Theorem 3.3 in [18], we can show that fi is continuously 
differentiable with respect to x and satisfies (2.1) with p= nr. Hence f is a 
smoothing approximation function of F. 



524 X. CHEN, L. QI, AND D. SUN 

Now we show that f has the Jacobian consistency property. For i = 1, 2, ..., 
it is easy to verify 

(2.5) 
f {pi (X)} if qi (x) -pi (x) e (li, ui), 

aBFi (X) = {qi(x)} if qi (x) -pi (x) ' [li, ui], 
{qi(x),pi(x)} if qi (x) -pi (x) = 1i or qi (x) -pi (x) = ui. 

Following Lemma 2.3 in [18] again, we have 

/(qi(x)-pj(x)-1j)1E \ 

(2-6) (fE(x, ))i = q4(x)- p(s)ds (q4(x) -p (x)). 
(qj(x)-Pi(X)-ui)/E 

Hence for any fixed x, 

lim (fx (X, E)) 

Pi (x) if qi(x) -pi(x) e (li, ui), 
qi (x) if qi (x) - pi (x) ' [li, ui], 

q(x) -(f 00 p(s) ds) (q4(x) - p (x)) if qi (x) -pi (x) = li, 

qi (x) - (f? p(s)ds) (qi (x) - p (x)) if qi (x) - pi (x) = ui. 

Since f %. p(s)ds and fg' p(s)ds are in [0, 1], we obtain (2.2). Hence f has the 
Jacobian consistency property. 

The limit (2.2) implies that for any 6 > 0 there is an E(x, 8) > 0 such that for 
any E C (0, (x, 6)] 

dist (fx (x, E), ac F(x)) < 6. 

Based on the Gabriel-More function, such (x, 6) for GVI(l, u,p, q) can be chosen 
as follows. 

Let 

-y(x) = mm { qj(x) -pi(x) - lji, Iqj (x) -pj (x) -u 
1<i,j<n 

(2.7) qi(x) - pi (x) = li,qj(x) - pj(x) = uj}. 

Since foo? s-lds = oc, (2.3) implies that the density function p satisfies 

lim |S12p(S) = 0. 
s-oo 

Thus we may choose a positive constant r < 1 such that for any v with vl e (0, r], 

(12 
P( lvl) 

< v 

This implies that for any E e (0, r] 

(2-8) { / p(s)ds, y p(s)ds} < 2ds =. 
J-oo J - 1/E S 

If lq'(x) -p'(x)H = 0, then by (2.6) from any E > 0, fx(x,E) = q'(x) e &cF(x). 
Suppose that IIq'(x) -p'(x)H $ 0. Let 

E(x, 8) = min{TtYzy (x), Y(X) | 2 V?n--q'(x) - p'(x)H 
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If qi(x) - pi(X) f [Li, ui], then Fi is differentiable at x and F17(x) = q'(x). Hence in 
this case for any ? c (0,&(X,6)], 

II(fY(X,e) - F'(x))iII 
/ (qi(x)-pj(x)-Ij)/E 

(2.9) = p (s)ds) Iq/(x) -p'(x)II 
' j )P( X d) lUi()/E (z 

'<(x llq'(x) - pI(x) 

6 
< 

2,,,F 

where the first inequality follows from (2.8) and T > Elky(x). 
If qi(x) -pi(x) c (li, ui), then Fi is differentiable at x and Fi'(x) = p (x). Hence 

in this case for any ? c (0, e(X, 6)] 

jj(fx (xI ?) - F'(x))i 1j 
(qi (x)-Pi (x)-1i)/6 \ 

(2.10) = ( j-J p(s)ds |qi(x) - pi(x)I 
\ qj(x)-Pi (x)-Ui)/e J 

(qi (x)-pi (x)-uj)1E 0oo 

= (j({i(x)~Pi(X)~zt)/E /p(s)ds+ j p(s)ds) jq'(x)-p'(x)jl 0 J (qj (x)-pi (x)-1j )1/6 

? E ) lq%(x) - Pi(x) 

< 6/J. 

If qi(x) - pi(x) = i or qi(x) - pi(x) = ui, then 

(fx (x?))i= qi(x) - A,(q/(x) -p (x)), 
where A, E [0, 1]. Thus in this case (fx(x,e ))i E &Fi(x) for any e > 0. 

Hence, in any case, we have 

dist ((fx (x, ?))ij, aFi (x)) < 6 / Vn 

Thus 
dist (fx (x, E), ac F(x)) < 6. 

By choosing a special density function, for any fixed x E Rn, we even can ask 
that 

(2.11) fx (XI) E acF(x) 

for any ? > 0 sufficiently small. For instance, we consider the uniform density 
function 

I ) { b-a if s E [a,b], 
Pk)~ 0 otherwise, 

where a and b are two finite real numbers and a < b. Notice that the uniform 
density function has 

c oo d 
] p(s)ds = 0, j p(s)ds = 0 and jp(s)ds = 1 
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for any d > b and c < a. Then it is easy to verify that for any E E (0, max{jaj,jbj}] 

(qi(x)-pj(x)-lj)/1 f 0 if qi(x) -pip(x) ' [li, ui], 

I('qy(x)-pj(x)-ui)/E p(s)ds = 1 if qiQv) - pi (x) E (1i, u%). 

By (2.9) and (2.10), we obtain (2.11). 
To see a smoothing approximation function with a concrete density function, we 

consider 

I~ 1f- 
(2.12) p(s) = f2 

- - 
2' 

(2.12) PkS)-1~~0 otherwise. 

By a straightforward calculation we have that 

{1/2 

fi(x,E) = qi(x) - mid (li, ui, qi (x) -pi (x) - Es)ds 
-1/2 

qi(X) (qi(x) - pi(X))(Ui - li) - (lj + uj)- 1 
(1- - U?) 

if lqi(x) - pi(x) - Ji < ', lqij(x) - pi(x) - ui < 2 

1~~~~~~~~~~~~~~~ 22q x i())26(i X-i()l 
= (qj(f)qi ( x) Pq)i (x)( -) - lv)2 - E <i 
2~~~~~~~~~~~~ (qi (x) - pi (x) )- 1 qi()P Jx-i)2-i+8 if lqi(x) - pi(x) - JlJ < 2, qi (x) - pi (X) - ui < 

1 
(qij(x) +pij(x)) + 1 (qij(x) -pij(x) - ui)2 -ui+ 

if Iqi (x) -pij(x) -Ui ' I ,qi(x) - pi(x) -L> 

Fi (x) otherwise. 

We can simplify the definition of f(x,E) for special E. For example, let 

(2.13) = m {inu i -l. 
1<i<n 

For i = 1,2, ..., n and E E (0,], the smoothing approximation function (2.4) with 

density function (2.12) reduces to 

(2.14) 

( (pPi(X) + qi(x)) + 1 (pi(X) - qi(x) + Ui)2 + -ui 
I if Iqi(x) - pi(x) - uil < 2 

fi(z?)= 2 (pi(x) + qi(x))- - (pi(X) - qi(x) + li)2- 2 - 2' 

if Iqi(x) -pi(x) - il < E 

Fi (x) otherwise. 

Let 

E(x) = min{?-y, 7(x)}, 

where ?- is defined by (2.13) and ey(x) is defined by (2.7). Then for any E e (O, E(X)], 

1(pl (x) + ql (x)) if qi (x) -pi (x) = ui or qi (x)-pi(x) = li, 

f Fi (x) otherwise. 

By (2.5), this implies that for any E E (0,E(X)], 

dist(fx(x, E), %CF(x)) = 0. 

For the general complementarity problem GCP(p, q), f(x, E) defined by (2.14) 

reduces to 

(2.15) 

f~(Xe) - f2 (pi(x) + qi(x)) - (pi(x) - qi())2 - if Iqi(x) -pi(x)| < E, 

{ ' t Fi (x) otherwise. 

The function defined by (2.15) has been studied in [5], [42]. 
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Some smoothing approximation functions are not derivable from the integra- 
tion of probability densities, for example, the Auto-scaling interior point smooth 
function [3], but also satisfy the Jacobian consistency property. 

3. A SMOOTHING NEWTON METHOD 

In this section we assume that f has the Jacobian consistency property, and 
present a smoothing Newton method with a line search based on f. We prove that 
this method converges globally and superlinearly. 

We denote 

0(X) = 1IIF(x)II2 

and 

Ok(X) = 1 -II(X, k) 112. 2 

Algorithm 3.1. Given p, a, rZ c (0,1), -y e (0, +oO) and a starting point xo E Rn. 
Choose a c (0, (1 - a)), and [ > 0 satisfying (2.1). 

Initial step. Let 130 = IIF(x0) II and ?o =23o. For k > 0, 
1. Solve 

(3.1) F(Xk) + fx(Xk, Ek)dk = 0. 

Let dk be the solution of (3.1). 
2. Let mk be the smallest nonnegative integer m such that 

(3.2) Ok (X + pmdk) -O k(Xk) < -2upm3(Xk). 

Set tk = pik and xk+l = Xk + tkdk. 

3. 3.1 If IIF(xk+l)ll = 0, terminate. 
3.2 If IIF(xk+l)ll > 0 and 

(3.3) |IF(xk?l)|| < maX{Ok,c, a-1 IF(Xk+l) _ f(Xk+l, ?k)I} 

we let 

-k+l = |IF(xk+ )II 
and choose an 6k+1 satisfying 

(3.4) 0 < Ek+1 < min{2 a-k+l, 2} 

and 

(3.5) dist(fx(xk?1 + k+l), &cF(x k+)) < -yf+ ? 

3.3 If IIF(xk+l)1I > 0 but (3.3) does not hold, we let /k+1 = I k and8k+l =k 

Without loss of generality, we assume that IIF(xk) 1/ 0 for all k in the following 
convergence analysis. 

Remark 3.1. Condition (3.5) is the crucial condition for superlinear convergence 
of Algorithm 3.1. To guarantee global convergence, one only needs to choose a 
smoothing approximation function f and ignore (3.5). If f has the Jacobian consis- 
tency property, we can find an 8k+1 > 0 such that (3.4) and (3.5) hold by Definition 
2.1. Moreover, we have shown, in section 2, how to choose an Ek+1 satisfying (3.4) 
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and (3.5) for GVI(l, u, p, q); we also show that it is possible to choose an Ek+1 sat- 
isfying (3.4) and (3.5) for order complementarity problems in section 5. From the 
construction of Algorithm 3.1, we have 

(3.6) IF(xk) -f(xk Ek)|| < a?IF(xk) for k > O 

and 

(3.7) 
dist(fx(xk,Ek),&ocF(Xk)) < 7||F(Xk)|1 for k E K, k> 1, 

where 
(3.8) 

K = {O} U {k I ||F(xk)II < max{mi3k1, C-1 Ilf (Xk, Ek-l)-F(xk) 11}, k E N}. 

Notice that (3.7) may not hold for those k such that (3.3) fail to hold. 

Lemma 3.1. Suppose that fx(xk, Ek) is nonsingular. Then there exists a finite 
nonnegative integer mk such that (3.2) holds. 

Proof. The continuous differentiability of f (, Ek) implies that Ok is continuously 
differentiable and Ek(Xk) f(xk vk)Tfxk vk). By the construction of Algorithm 
3.1, fX(Xk,Ek)dk = -F(xk). Then, from (3.6) we have 

Ok (X + tdk) - Ok (Xk) 

= to, (xk )dk + o(t) 

= -tF(xk)Tf (Xk, Ek ) + o(t) 

= 2te(x k) + tF(xk)T (F(xk) -f (xk, Ek)) + o(t) 

< -2te(x k) + 2taO (xk) + o(t) 
-2t(1 - a)e(xk) + o(t). 

Since a < (1 - a) < 1- -, there exists a finite nonnegative integer mk such that 
(3.2) holds. D 

Assumption 1. The level set 

Do = {x E Rn: E8(x) < (1 + a)2E(x0)} 

is bounded. 

Assumption 2. For anyE E R++ and x E Do, fx(x, E) is nonsingular. 

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Then Algorithm 3.1 is 
well defined and the generated sequence {Xk } remains in Do and satisfies 

(3.9) lim F(xk) = 0. 

Proof. Let us denote 

K1 = {k E K| ql3k-1 ?> a |lf(Xk, Ek-1) -F(xk)f} 

and 
K2 = {k E K| Th3k-1 < a- llf(Xk,Ek-1) - F(xk)} 

Then K1 U K2 U {}0 K, which is defined in (3.8). Assume that K consists of 
ko = 0 < k < ....<.< . Let k be an arbitrary nonnegative integer. Let kj be the 
largest number in K such that k3 < k. Then 

Ek = Ekj and 3k = /3kj 
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Notice that f is a smoothing approximation function. By the line search rule (3.2), 

flf(Xk,Ekj)lI < lIf(Xka,Ekj)Il. 

Then by (2.1), for j > 0, 

JIF(xk)HI < Ilf(Xk Ek) || + |F(xk)_ f (Xk,k) 

=lf (xk,Ekj)fI + ||F(Xk) - f(X Ekj)I 

(3.10) ? ||f(xki,jkj)f||pskj 

? ||F(xk)II + AtEkj + hiEkj 

/3kg + 2AEktk. 

If j 0, 3kj = 0, kj = Eo and 

IF F(Xk)I < ?3o + 2pEo < (1 + a) fIF(x0) 11 

If j > 1, by step 3 of Algorithm 3.1, 
1 1 

Ekj < 2Ekj-1 = - 2 2 
and 

/3kj <- 3kj-1 = l3kj>1 if kj E K1, 
or 

3kj < al(xki,6kj-1)- F(xki) kj-1 Ekjl < kj if k K2. 

Let 

r max{-,07}- 2 
Then by the definitions of Co and 130, for j > 1, 

(3.11) CEkj < 2(-1)EO= 
I 

aIIF(x?) 

and 

(3.12) 3kj < r-130 = rjl- F(x0)fI 

Hence by (3.10), for j > 1 

||F(xk)Il < (r3'-? +2J )lIF(x)Hl 

(3.13) < rj-1(1 +ao) IF(xo)||, 

where the last inequality follows from the fact that 2< r. 
Therefore in any case 

||F(Xk) 11 < (1 +?) a)F(x0) 11 
This implies that the sequence {xk } remains in the level set Do. 

Now we prove (3.9). If K is infinite, by (3.13), 

lim ||F(xk) 
? lim ri-(1 ?+ a) a)F(x) I I = 0. 

k-oo 3 

Hence to prove (3.9), it suffices to prove that K is infinite. Suppose that K is finite. 
This means that both K1 and K2 are finite. Let k be the largest number in K. 
Then for all k > k, 

(3.14) Ek = Ek 3k = =IF(Xk)IIf 
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(3.15) ||F(xk)H| > r/13p k=|F(xk)|| > 0 

and 

(3.16) aflF(xk)HI > If(Xk,ek) - F(Xk)H. 

By (3.15), for all k> k, 

(3.17) E(xk) > 2E) (xk) 

Let 

f(x) f(X,5) 
and 

0(x) )-Ilfx))112 2 
Notice that for all k > k, 

f(Xk,Ek) = f(X ) and Ok(Xk) =(Xk). 

By Assumptions 1 and 2 there is an M > 0 such that for all x E Do, IIfx(x, 5)1 
< M. Then for all k > k, 

IdkH llfx(Xk,E)lF(Xk) 11 

? MIIF(xk 

? M(1 +?ax) F(x0) 
=: L. 

If infk tk = t* > 0, then from (3.17) and the line search rule (3.2), for all k > 0, 

O(Xk+1) _ 0(Xk) < -2utk (Xk) < -2ut* ?2 EG(xk) < 0. 

This, together with the monotonicity of {O(Xk)}k>k, implies that O(xk) -oc as 

k -, oc. This contradicts the fact that 0(xk) > 0 for all k > 0. Hence K cannot be 
finite. Thus (3.9) holds. 

Now we consider the case that infk tk= 0. Let Ko be a subsequence of N such 
that {tk}kEKo converges to zero. Since {xk} is bounded, without loss of generality, 
we assume that {Xk}kEKo converges to x*. 

By the line search rule (3.2) for all k > k, 

(3.18) - 2Upmk l'E)(Xk) < o(xk + pmk-ldk) _ 0(xk). 

Dividing both sides by pMk-1, we obtain 

22uE(Xk) < 0(Xk + pk ld k) - 0(xk) 
pMk-1 

0f(xk)d ? j 0 ?+ Apk-ldk) of(xk))dk)dA 

Notice that 

0f(Xk)dk = F(Xk)Tf (xk) 

- -20(Xk) + F(Xk) (f (Xk) - F(Xk)) 

< -2(x k) + 2a0E(xk), 

where the last inequality follows from (3.16). 
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A~~~~~~~~ By the continuity of 0', the boundedness of {dk} and limkEK0 mk= oc, we have 
k-oo 

lim I ((0f(xk + Apmk-ldk) _ oI(Xk ))d k)dA 0. 

k-4oo 

By taking the limit in (3.18) on the subsequence k E Ko, we obtain 

-2uEG(x*) < -2(1 - a)E(x*) < 0. 

This implies a > (1 - a), which contradicts the fact that a' < (1 - a)/2. Hence K 
cannot be finite. Thus (3.9) holds. D 

To show the superlinear convergence rate, we give the following lemma. 

Lemma 3.2. If there exists a scalar 

(3.19) A 
I (I - a - 2u)2 l 
2 2(2?c a)2 ' -2 

such that for some k E K, 

(3.20) E (y) - E(xk) < -2AE (Xk), 

then it holds that 

(3.21) Ok(Y) - Ok (Xk) < -2uE0 (xk). 

Proof. By the definition of K, we have 

o < Ek < 2 ||F(xk)Hl, k E K. 

Hence, from (2.1), for any y E R', k E K, 

Ilf (Y, Ek) || < ||F(y)|| + 2 H|F(xk)H| 

and 

Ilf(Xk,ek)H ? |F(Xk)l - aXk HF(xkk 

Using these two inequalities and (3.20), we obtain 

Ok(Y) Ok(xk) -llf(Y, Ek)H2- !Hf(wk 6k)2 2 2 
1 2aIIlF(Y) 1l + 2 ||F(Xk) I1)2 1 a Ce 2 (Xk) 112 < 6(9F(y)l + oz (F1 +- (x)-F(xk-Fl2 

2 2 ~~~2 2 

- 0(y) ?~~~(k)+ 
Z 

E(Xk) 
2 

E)G(Xk) 
2 4 4 

E(y) ? IaHF(y) ||F(xk)- (1 - e)(xE ) 
2 

< E_ () ?+ a 1 -2AE(Xk) - (1 - a)E(Xk) 

E(y)-E(xk) + a(1 + 2A)(Xk) 

< -(2A - a(1 2A)E(Xk), 

where the second and last inequalities follow from (3.20). 
Let us denote 

X(A) = A - Ia1 + V) . 
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To prove (3.21), it suffices to show 

(3.22) Ob(A) > a' for A [1 (I a2 ) -1 
2 2(2 + a)2 '2 

Since 0 < (1 - a - 2o)/(2 + a) < 1, 

(1-a-o' f)2 1-a-2o' 

(3.23) (2au)2 <- 2?a 

Notice that X is monotone increasing in [0,-]. We only need to show (3.22) at 

A - 
2(1-2(2+a)2 By the definition of X and (3.23), 

q$(A) = 2 - ( a - 
2u)2 1 (I+ )-a-2 

I 1- a-2 2a 1-aa-2u 

- 2 2+a - 2(1? 2+ a 
1 

a_ 
2 2 

> a. 

This completes the proof. El 

Theorem 3.2. Suppose that Assumptions 1 and 2 hold. Suppose that for an ac- 
cumulation point x* of the sequence {xk}, all V E &cF(x*) are nonsingular and 
that F is semismooth at x*. Then x* is a solution of F(x) = 0 and the sequence 
{Xk } generated by Algorithm 3.1 converges to x* superlinearly. Moreover, if F is 
strongly semismooth at x*, then {xk} converges to x* quadratically. 

Proof. By Theorem 3.1, x* is a solution of F(x) = 0. Notice that &BF(x*) C 

&CF(x*). By Proposition 2.5 in [40] there is a neighbourhood of x* such that x* is 
the unique solution in this neighbourhood. 

By Theorem 3.1, the set K defined by (3.8) is infinite, and there is a subsequence 
Ko of K such that {Xk}keGK,o converges to x*. Now we consider the convergence 
behaviour of the subsequence {xk }keKo. 

Notice that for any x E Rn, &CF(x) is a compact set. Let Vk E &CF(xk) be such 
that 

dist(fx(xk, Ek), OCF(Xk)) = lfx(Xk, Ek) - Vk11 

By construction of Algorithm 3.1, 

H1fx(x ,Ek) - VkH < -Y3k, k E Ko. 
By Theorem 3.1, /3k -- 0 as k -- oc. This, together with the compactness of 
&cF(x*), the nonsingularity of all V E &cF(x*) and the upper semicontinuity of 

&cF(.) at x*, implies that there exist M > 0 and k > 0 such that for all k > k and 
k E Ko, llfx(xk, Ek)1 < M. Therefore, by the construction of Algorithm 3.1, for 
all k > k and k E Ko, 

flXk + dk _X* | = flXk _X* -fx(Xk6 Ek) lF(xk)H 

= fx(xk,Ek) (fx(xk,Ek)(Xk -x*) -F(xk) + F(x*))| 
? flf(x(Sk ) lfl (11(fx(xk ek)-Vk)(Xk _-X*)|l 

+1 Vk (X - x*) - F(Xk) + F(x*) ||) 

(3.24) < M(-Y/3|xk X ? Vk(X -x*)-F(x) +F(x*)1). 
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Since F is semismooth at x* if and only if each Fi is semismooth at x* [43], by 
Theorem 3.2 in [43], 

||Vk(Xk - x*) - F(xk) + F(x*)| 
n 

(3.25) < E Vi (x k - X*) -Fi(Xk) + F (x*) 11 2 

=o (IIXk - x*I1) as k - oo, k E Ko, 

where V,, denotes the ith row of Vk. Hence 

(3.26) IlXk + dk _X*|| = O(|IXk-x*11) as k - oo, k E Ko. 
Furthermore, following the proof of Theorem 3.1 in [403 

(3.27) IF(xk + dk) 1 = o(JIF(xk)fl) as k - oo, k E Ko. 

Let A max 2- , ' } Then (3.27) implies that there is k> k such 

that k E Ko and for any k > k and k E Ko, 

(3.28) E)(Xk + dk) -_ (xk) < -2AEG (Xk). 

By Lemma 3.2, for any k > k and k E Ko, 

Ok (X + d - Ok(Xk) < -2uE(xk) 

that is, tk 1_ and xk?1 - xk + dk for all k > k and k K0. In particular, 
xk+1 = xk + dk and from (3.28), 

JIF(x?+1) I < 1 - 2AIIF(xk)II <? rF(xk)ll = ql3k, 

which implies that xk+1 E Ko. Repeating the above process we may prove that for 
all k > k, 

k E Ko 
and 

k+1 k k x =x ?dk 

Then by using (3.26) we have proved that {xk} converges to x* superlinearly. 
If F is strongly semismooth at x*, then each Fi is also strongly semismooth at 

x*. By (3.25) and Lemma 2.3 in [40], 

IIVk(Xk-X*)-F(x ) + F(x*) II =O(||xk-x |12). 

By the Lipschitz continuity of F, for all k E Ko, 

3k = |I F(xk) |O| = (Ixk_ X* 1). 

Hence the quadratic convergence follows easily from (3.24) and the above proof. D 

4. APPLICATION 

In this section we discuss an application of Algorithm 3.1 to general box con- 
strained variational inequalities GVI(l, u, p, q). Conditions used in the convergence 
analysis of Algorithm 3.1 are Assumptions 1 and 2, and the condition that F is 
semismooth at a solution point x* and all V E &cF(x*) are nonsingular. Now we 
consider when these conditions hold for the smoothing approximation function f 
defined by (2.4) and the nonsmooth function F defined by (1.11). 

Let A be an n x n matrix. A is called a Po-matrix, if its principal minors are 
all nonnegative, and A is called a P-matrix, if its principal minors are all positive. 
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We call p: ER - ER a uniform P-function with respect to q if there is a positive 
constant K such that 

(4.1) max (qi (x) -qi (y)) (pi (x) -pi (y)) > /-<x-yI 2 - 
1<i<n 

If q is the identity map and (4.1) holds, then we call p a uniform P-function directly. 
The concepts of a P-matrix and a uniform P-function have been frequently used 

in complementarity and variational inequalities areas. 

Proposition 4.1. Suppose that q is norm coercive, i.e., IIq(x)II - oo if and only 
if llxll - oo. Then the level sets 

D (F) = {x En IIF(x)I? < F} 

are bounded for all positive numbers F if one of the following two conditions is 
satisfied: 

(i) I and u are both bounded; 
(ii) p is a uniform P-function with respect to q and q is surjective and Lipschitz 

continuous. 

Proof. Since q is norm coercive, the boundedness of D(F) unlder assumption (i) 
follows easily. 

Next we prove the boundedness of D(F) under assumption (ii). It is not difficult 
to verify that for a, b cE Rn, 

(4.2) l - mid(li, ui, ai - bi) oo as I ai ,bi2 o0. 

Suppose that there exists one 17> 0 such that D(F) is unbounded, i.e., there exists 
a sequence {xk} C D(F) such that wlXkll __ o. Since q is norm coercive, {I q(xk) I} 
is unbounded. Define the index set J by J := {il {qi(xk)} is unbounded, i 
1, 2, ..., n}. Then J :& 0. Since q is surjective, we can choose yk E JRn such that 

qi(yk)={ qi(xk) if i J, 
0 i f icJ. 

Then {llq(yk)II}, and so {I lyk }, is bounded. Since p is a uniform P-function with 
respect to q, there is a positive number K such that 

|i| xk - yk 112 < max (qi (xk)-qi (yk)) (pi(X)-Pi(Y)) 

1<i<n 
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which, together with the Lipschitz continuity of q, implies that 

L-2KEc(qi (Xk))2 = L-2,1jq(yk) - q(xk) 112 
iCJ 

< K|Ixk _ yk 112 

< max I qi (yk) - qi (xk) I-P(i ) -I 

<max I qi (x)p x I (x )) P pi ) 

icJ 

where L is the Lipschitz constant of q. Then maxi2j lpi(x yk ) oo as k - 

oc. Since { 1p(yk)II} is bounded, for each k there exists at least one ik E J such that 

lPik(x )l - 

Since J has only a finite number of elements, by taking a subsequence if necessary, 
we may assume that there exists an i C J such that 

|pi(x k) > ?o. 

Then we have proved that there exists at least one i E J such that 

lqi(x k) 1 |P,(X k) I_> (X) 

which, together with (4.2), implies that for such i, {fFi(xk)I} is unbounded. This 
is a contradiction. So for every F > 0, the level set D(F) is bounded. D 

Remark 4.1. Let I = {ij li =-oo or ui = oo, i = 1,., n}. Notice that the index 
set J in the proof of Proposition 4.1 is a subset of I. Conditions (i) and (ii) in 
Proposition 4.1 can be replaced by the following condition 

(4.3) I(qi(x) -qi(y))2 < max (qi(x) -qi(y))(pi(x) -pi(y)) 
1<i<n 

ici 

Moreover, if condition (i) holds, then I - 0, so (4.3) holds directly. If condition (ii) 
holds, then from 

E(qi(x) - qi(y))2 < llq(x) - q(y)j 2 

icI 

we have (4.3). 

Proposition 4.2. Suppose that q'(x) is nonsingular at x cE n 

(i) If p'(x)q'(x) 1 is a P-matrix, then for any E > 0, fx (x, e) and all elements 
in &cF(x) are nonsingular; 

(ii) If p'(x)q'(x)-1 is a Po-matrix and the support of the density function p, 

supp(p) = {s: p(s) > 0} 

is the whole real line. Then for any E > 0, fx(x, e) is nonsingular. 
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Proof. (i) By (2.6), 

(4.4) fx (X I ) = q'(x) - D(x) (q'(x) -p'(x)), 

where D(x) =diag(di(x)) has di(x) E [0,1]. Let 

[0,1]'I 
2P(x) q'(x) - ( 0 (q'(x) - p'(x)). 

V ~~~~[0,1] 

By Lemma 5.1 in [39], all elements in 2P(x) are nonsingular. Obviously, fx(x, e) E 

P(x) and &cF(x) C P(x). Hence we obtain (i). 
(ii) Supp(p) = X implies that the diagonal matrix D(x) in (4.4) has di(x) E [0, 1). 

By Theorem 4.2 in [18], 

I - D(x)(I -p'(x)q'(x) 

is nonsingular. Thus 

fx (x, e) = (I - D(x) (I -p'(x)q'(x)-1))q'(x) 

is nonsingular. D 

The condition in Proposition 4.1 that p'(x)q'(x)1 is a P-matrix can be weakened 
to the condition that [p'(x)q'(x)-1]_ is nonsingular and its Schur complement in 
[p'(x) q'(x) -'] -u 1, 

[p (x) q (x) -] _u 13/ [p(x) q (x) -] _;, 

is a P-matrix, where 

I{ = i < qi(x)-Pi(x) < ui}, 

B3=i {: qj (x)-pi (x) =lij}Ui {: qi (x)-pi (x) =ui }. 

Corollary 4.1. Suppose that p, q :Ji' -- Ji are continuously differentiable, p 
is a uniform P-function with respect to q, and q is norm coercive, surjective and 
Lipschitz continuous. Then the iteration sequence {Xk } generated by Algorithm 3.1 
for F given by (1.11) and f defined by (2.4) is well defined and converges to the 
unique solution x* of F(x) = 0 superlinearly. Furthermore, if p' and q' are locally 
Lipschitz continuous around x*, the convergence is quadratic. 

Proof. By the assumption that p is a uniform P-function with respect to q, there 
exists a K > 0 such that (4.1) holds. Since p, q are continuously differentiable, from 
(4.1) for any x E Jn we have 

max (q'(x)z)i (p'(x)z), > izTz for all z E Rn. 
1<i<n 

This, from Lemma 5.1 of [39], implies that both q'(x) and p'(x) are nonsingular 
and p'(x)q'(x)-1 is a P-matrix. Then from Proposition 4.2, for any x E Jn and 
E > 0, fx(x,E) is nonsingular and all elements in &cF(x) are nonsingular. The 
boundedness of Do follows from Proposition 4.1. The uniqueness of the solution 
follows from the nonsingularity of all elements in &cF(x). Finally, F is piecewise 
smooth, hence semismooth everywhere, from Theorem 3.2 we may conclude that 
{xk } is well defined and converges to the unique solution x* superlinearly. 

The quadratic convergence follows from the fact that when p' and q' are Lipschitz 
continuous around x*, F is strongly semismooth at x*. D 
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Remark 4.2. When q is the identity map, Corollary 4.1 says that if p is a con- 
tinuously differentiable uniform P-function, then the sequence {xk} generated by 
Algorithm 3.1 is well defined and converges to the unique solution of box con- 
strained variational inequalities superlinearly. Such a result was only obtained for 
the nonlinear complementarity problem in [8]. In [27], [48], a similar result for box 
constrained variational inequalities was obtained by assuming that p is a strongly 
monotone function, which is a stronger condition than that of a uniform P-function. 

5. FINAL REMARKS 

In this paper we have shown that the smoothing Newton method for solving non- 
smooth equations can have a convergence rate better than the linear rate. We have 
established global and superlinear convergence of the smoothing Newton method 
based on the Jacobian consistency property. Furthermore, we have investigated our 
conditions used in the convergence analysis for general box constrained variational 
inequalities GVI(I, u, p, q). We have shown that all assumptions hold if p is a uni- 
form P-function with respect to q and q is norm coercive, surjective and Lipschitz 
continuous. In contrast with other methods for GVI(l, u, p, q), the smoothing New- 
ton method has three advantages: solution of a linear system at each iteration, the 
boundedness of the iterates and superlinear convergence rate. 

Algorithm 3.1 and the convergence analysis in section 3 are not restricted to 
GVI(l, u, p, q). More applications of the smoothing Newton method are possible. 
For example, we can use the smoothing Newton method to solve the order comple- 
mentarity problem. The order complementarity problem is to find an x E Jn such 
that 

(5.1) q (x) > O, i = 1, . ,m, [| lq37(x) = O, j = 1, ...,In, 

where all qi : Jn -- Jn are continuously differentiable. Problem (5.1) has received 
as increasing amount of interest recently [19], [24]. Let "min" be the component 
minimum operator. Problem (5.1) is equivalent to finding a zero of the following 
nonsmooth equation 

min(qi(x) : i = 1, ..., Im) = O. 

For simplicity, let us consider 

(5.2) F(x) = mnin(r(x), q(x), p(x)). 

By using the results of Zang [52], (5.2) is equivalent to 

F(x) = r(x) - max(r(x) - q(x) + max(q(x) - p(x), 0), 0). 

A smoothing approximation function f, which has the Jacobian consistency prop- 
erty, can be given as 

fi (xI E) = 'ri (x) 

-/ max r (x)-qj(x)-Et + max(qj(x)-p j(x)-sS, 0)p(s)ds, O) p(t)dt, 
-00 -~~~~~~~00 

where p: X - R+ is a density function with a bounded absoluto mean. 
Another possible application of the smoothing Newton method is for the varia- 

tional inequality problem (1.3) with X given by 

X = {x E R'l g(x) < 0, h(x) = 0, I < x < u}, 
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where g: Rn -- R" and h: Rn -- Rm2 are assumed to be twice continuously 
differentiable. The Karush-Kuhn-Tucker conditions of problem (1.3) can be written 
as [49] 

X-tI[l,] [X - L(x, A, u)] 

(5.3) A -rITR+ [AX-;(-g(x))] = o 

V ~-h(x) 
where 

mI m2 

L(x, A, p) = p(x) + E Vgi (x)A, + E Vhj (x)tj3. 
i=1 j=1 

Problem (5.3) is a special box constrained variational inequality problem, so the 
smoothing Newton method can be used directly to find a solution of (5.3), and 
in turn to find a solution of (1.3) under some constraint qualification conditions 
[20]. However for problem (5.3), the boundedness assumption on the level sets may 
not hold even if p is strongly monotone. We will leave this and the comparison of 
different smoothing approximation functions in the smoothing Newton methods as 
further research topics. 
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